02-03.5

Steam-conditioning station RS 702

Kv coefficient calculation

Calculation itself is carried out with respect to conditions of regulating circuit and operating medium according to equations mentioned below. Control valve must be designed to be able to regulate maximal flow quantity at given operating conditions. At the same time it is necessary to check whether minimal flow quantity can be even regulated or not.
Because of eventual minus tolerance 10% of Kv_{100} against Kvs and requirement for possible regulation within range of maximal flow (decrement and increase of flow), producer recommends to select Kvs value higher than maximal operating Kv value:

$K v s=1.2 \div 1.3 \mathrm{Kv}$

It is necessary to take into account to which extent $Q_{\text {max }}$ involve "precautionary additions" that could result in valve oversizing.

Relations of Kv calculation

		Pressure drop $p_{2}>p_{1} / 2$ $\Delta p<p_{1} / 2$	Pressure drop $\Delta p \geqq p_{1} / 2$ $p_{2} \leqq p_{1} / 2$
Liquid	$\frac{Q}{100} \sqrt{\frac{\rho_{1}}{\Delta p}}$		

Above critical flow of vapours and gases

When pressure ratio is above critical ($\mathrm{p}_{2} / \mathrm{p}_{1}<0.54$), speed of flow reaches acoustic velocity at the narrowest section. This event can cause higher level of noisiness and then it is convenient to use a throttling system ensuring low noisiness (multi-step pressure reduction, damping orifice plate at outlet).

Cavitation

Cavitation is a phenomenon when there are steam bubbles creating and vanishing in shocks - generally at the narrowest section of flowing due to local pressure drop. This event
expressively cuts down service life of inner parts and can result in creation of unpleasant vibrations and noisiness. In control valves it can happen on condition that

$$
\left(p_{1}-p_{2}\right) \geqq 0.6\left(p_{1}-p_{s}\right)
$$

Valve differential pressure should be set the way so that neither any undesired pressure drop causing cavitation can occur, nor liquid-steam(wet steam) mixture can create. Otherwise it must be taken into account when calculating Kv value. If the creation of cavitation still threatens, it is necessary to use a multi-step pressure reduction.

Valve flow characteristics

L - linear characteristic
$\mathrm{Kv} / \mathrm{Kv}_{100}=0.0183+0.9817 .\left(\mathrm{H} / \mathrm{H}_{100}\right)$
R - equal-percentage characteristic (4-percentage) $\mathrm{Kv} / \mathrm{Kv}_{100}=0.0183 . \mathrm{E}^{(4.4 H 1 / 100)}$

Rangeability

Rangeability is the ratio of the biggest value of flow coefficient to the smallest value. In fact it is the ratio (under the same conditions) of highest regulated flow rate value to its lowest value.
The lowest or minimal regulated flow rate is always higher than 0 .

Dimensions and units

Marking	Unit	Name of dimension
Kv	m³/hour	Flow coefficient under conditions of units of flow
K v_{100}	$\mathrm{m}^{3} /$ hour	Flow coefficient at nominal stroke
Kvs	$\mathrm{m}^{3} /$ hour	Valve nominal flow coefficient
Q	m³/hour	Flow rate in operating conditions ($\mathrm{T}_{1}, \mathrm{p}_{1}$)
Q_{n}	Nm³/hour	Flow rate in normal conditions ($0^{\circ} \mathrm{C}, 0.101 \mathrm{MPa}$)
Q_{m}	kg/hour	Flow rate in operating conditions ($\mathrm{T}_{1}, \mathrm{p}_{1}$)
p_{1}	MPa	Upstream absolute pressure
p_{2}	MPa	Downstream absolute pressure
p_{s}	MPa	Absolute pressure of saturated steam at given temperature (T_{1})
$\Delta \mathrm{p}$	MPa	Valve differential pressure ($\Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}$)
ρ_{1}	$\mathrm{kg} / \mathrm{m}^{3}$	Process medium density in operating conditions ($\mathrm{T}_{1}, \mathrm{p}_{1}$)
ρ^{\prime}	$\mathrm{kg} / \mathrm{Nm}^{3}$	Gas density in normal conditions ($0^{\circ} \mathrm{C}, 0.101 \mathrm{MPa}$)
V_{2}	$\mathrm{m}^{3} / \mathrm{kg}$	Specific volume of steam when temperature T_{1} and pressure p_{2}
v	$\mathrm{m}^{3} / \mathrm{kg}$	Specific volume of steam when temperature T_{1} and pressure $p_{1} / 2$
T	K	Absolute temperature at valve inlet ($\mathrm{T}_{1}=273+\mathrm{t}_{1}$)
X	1	Proportionate weight volume of saturated steam in wet steam

Diagram for the valve Kvs value specification according to the required flow rate of water Q and the valve differential pressure Δp

The diagram serves to specify the valve Kvs value regarding to the required flow rate of water at a given differential pressure. It can be also used for finding out the differential pressure value of the existing valve in behaviour with the flow rate. The diagram apllies to water with the density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
For the value $\mathrm{Q}=\mathrm{q} \cdot 10^{n}$, it is necessary to calculate with $\mathrm{Kvs}=\mathrm{k} .10^{n}$. Example: water flow rate of $16.10^{-1}=1,6 \mathrm{~m}^{3} / \mathrm{hour}$ corresponds to $\mathrm{Kv}=2,5=25.10$ when differential pressure 40 kPa .

Application of multi-step pressure reduction

When the valves are designed for operation in above-critical differential pressure ($p / p<0,54$ when throttling steam and gases), or when diff. pressure value is higher than he recom-

One-step pressure reduction

Application of orifice plate

In case of above-critical flow, the producer recommends to instal one or more orifice plate at the valve outlet to stream-line the process medium flow and to lower the noisiness. The concrete valve execution (No. of orifice plates) is designed according to pressure ratio and it is recommended to consult it with the producer.
mended service diff. pressure, it is effectual to use a throttling system in two or three steps to prevent the cavitation from creating and to ensure both a long service life of the valve inner parts and low noisiness when operating.

Two-step pressure reduction

Water injection into outlet pipe

The valve outlet is designed for connection of water injection head VH see catalogue 02-03.2 or drive-steam water injection head VHP. The heads are designed to create tiny water drops independently on injected quantity with regard to their most wellproportioned and quickest spraying and vaporescence. The advantage of this design is a possibility of application of a lowpressure source, distribution and injection water regulation and separation of the valve trim from their effects. The injection water quantity is controlled by a separate control valve.

Steam-conditioning station Inlet DN 50, 100, 125, 150, 250 Outlet DN 100 to 600 PN 16 to 400

Description

Steam conditioning station RS 702 is single-seated control valve of a unit construction designed for water injection into the extended outlet. The pressure-balanced, multi-step throttling trim is designed to eliminate high differential pressures within the valve and ensure the low noisiness. It ensures a high resistance to wearing caused by medium flow and to effects of the expanding steam. Cooling water is injected into the extended outlet with a specially designed nozzle (VH or VHP) with changeable flow. The valve is equipped with "Live Loading" packing
The valves are supplied with weld ends.
The valves are actuated with linear electric actuators. The connection is designed for both domestic and foreign actuators of the following producers: ZPA Nová Paka, ZPA Pe ky, Regada, AUMA, Schiebel and EMG - Drehmo.

Process media

The valves are designed to regulate the pressure and temperature of water vapour without mechanical impurities. The producer recommends to pipe a strainer into pipeline in front of the valve when impurities are present. Impurities can affect the quality and reliability of regulation and can cause a reduction of the valve service life.The application for other process media must be considered with respect to used material that is in contact with the process medium and therefore its usage should be consulted with the producer.

Application

The valves are designed for simultaneous pressure and temperature reduction of steam. They are especially designed for industrial applications such as low-pressure steam production in heating, steam circuit in power plants or technological processes. The max. permissible operating pressures correspond to EN 12516-1 mentioned on page 23.

Installation

The valves must be piped the way so that process medium flow will coincide with the arrows indicated on the valve body. They can be installed in horizontal, vertical or inclined pipeline in any position except the position when the actuator is under the valve body. The valves DN 250 can be piped in horizontal pipeline only. The actuator cannot be tilted.

Recommended differential pressures

In regard to the pressure balancing of the plug and to linear forces of usable actuators, the valves' application in high differential pressures is not limited by the forces caused by process medium pressure but by the type of used throttling system. A recommended max. differential pressure for one step of multi-step pressure reduction is 5.0 MPa when perforated plug and perforated cage are used. It is recommended to consult the concrete cases with the producer with regard to pressure ratio and parametres of other equipment.

Technical data

| Series | RS 702 | | |
| :--- | :---: | :---: | :---: | :---: |
| Execution | Control valve, single-seated, straight-through, with press.-bal. plug, with
 extended outlet and orifice plate at outlet, with water injection into outlet pipe | | |
| Range of nominal size | Inlet DN 50 to 250; outlet DN 50 to 600 | | |

Range of Kvs values

DN	50/XXX	100/XXX	125/XXX	150/XXX	250/XXX
Multi-step pressure reduction	Kvs values [$\mathrm{m}^{3} / \mathrm{h}$] - linear flow characteristic				
1	3.2-32	10-125	16-360 *)	16-360 *)	40-630
2	2.5-32	8.0-100	12.5-250	12.5-250	40-500
Multi-step pressure reduction	Kvs values [$\mathrm{m}^{3} / \mathrm{h}$] - equal-percentage flow characteristic				
1	6.3-25	16-63	32-125	32-125	50-320
2	5.0-20	12.5-50	25-80	25-80	50-160

*) Only for PN 160 and 250, for PN 320 and $400 \mathrm{Kvs}_{\max }=250$ $\mathrm{m}^{3} / \mathrm{h}$
Nominal values of Kvs are understood as multiplies of 10 of the basic figures mentioned in the following parenthesis R10 (1.0; $1.25 ; 1.6 ; 2.0 ; 2.5 ; 3.2 ; 4.0 ; 5.0 ; 6.3 ; 8.0 ; 10.0)$. They are

Dimensions and weights for RS 702 with weld ends *)

DN	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$	$\mathrm{~V}_{4}$	$\mathrm{~V}_{5}$	L	H	m	$\mathrm{m}_{\text {max }}$
	$[\mathrm{mm}]$	$[\mathrm{kg}]$	$[\mathrm{kg}]$						
$50 / 100$	110	320	160	170	118	---	25	---	---
$100 / 200$	170	405	160	215	185	1025	40	---	---
$125 / 250$	225	466	160	---	---	---	63	---	---
$150 / 200$	225	466	160	215	185	---	63	---	---
$150 / 300$	225	466	160	250	241	---	63	--	---
$250 / 500$	345	675	210	---	---	1680	100	---	---

*) There are only values of recommended combination of inlet and outlet dimensions mentioned in the table m - weight of the valve without orifice plate $\mathrm{m}_{\text {max }}$ - weight of the valve with 3 orifice plates
Note: The values of weight are approximate. For missing data contact the producer.
specified for every valve acc. to the customer's requirements and value within the appropriate range showen in the table above. Parameters of outlet (DN, PN) can be modified on request.

Weld ends connection dimensions

	PN								
	$16-40$	63	100	160	250	320^{*}	400^{*}	$16-400$	
DN	t	t	t	t	t	t	t	D	
	$[\mathrm{mm}]$								
50	2.9	3.2	4.5	6.3	8	10	14.2	60.3	
65	3.2	3.6	5	7	10	13	17.5	76.1	
80	3.6	4	5.6	8	12.5	14.2	19	88.9	
100	4	5	7	10	14	16	20	114.3	
125	4.5	5.6	8	12.5	18	20	23	139.7	
$\mathbf{1 5 0}$	5	7	10	14	20	23	26	168.3	
200	6.3	8	12.5	18	25	28	32	219.1	
250	7	10	16	22	32	35	38	273	
300	8	12.5	18	25				323.9	
$\mathbf{3 5 0}$	9	12.5	20	28				355.6	
400	11	14	20	32				406.4	
$\mathbf{5 0 0}$	14	18	25					508	
600^{*}	18	23						610	

* For DN 600 - weld ends connection acc. to LDM execution
** For PN 320, 400 - weld ends connection acc. to LDM execution
These combinations of DN and PN are not available

Steam-conditioning station RS 702 with weld ends

Valve complete specification No. for ordering RS 702

		XX	X X X	X X X	XXXX	XX	- $(\mathrm{XX/XX})$	XXX	$-(X X / X X)$
1. Valve	Steam-conditioning station	RS							
2. Series	Straight-through valve with extended outlet and water injection into outlet pipe		702						
3. Type of actuating	Electric actuator			E					
1)	Pneumatic actuator			P					
Pneumatic actuators only for DN 150	Electric actuator Modact MTR ${ }^{2)}$			EPD					
	Electric actuator Modact MTN Control ${ }^{2)}$			EYA					
O	Electric actuator Modact MTN ${ }^{2)}$			E Y B					
	Electric pohon Modact MOP 52030			EYE					
	El. actuator Modact MOP Control 52030			E Y F					
	Electric actuator Modact MOP 52031			E Y G					
	El. actuator Modact MOP Control 52031			EYH					
	Electric actuator Auma SAR 7.5			E A G					
	Electric actuator Auma SAR Ex 7.5			EHH					
	Electric actuator Auma SAR 10.1			E AK					
	Electric actuator Auma SAR Ex 10.1			EAJ					
	Electric actuator Schiebel rAB5			E Z G					
	Electric actuator Schiebel exrAB5			E Z H					
	Electric actuator Schiebel rAB8			E Z K					
	Electric actuator Schiebel exrAB8			E Z L					
	Pneumatic actuator Foxboro PO $700{ }^{11}$			PFG					
	Pneumatic actuator Foxboro PO $1502{ }^{1)}$			PFD					
4. Connection	Weld ends				4				
5. Body material	Cast steel $1.0619 \quad\left(-20\right.$ to $\left.400^{\circ} \mathrm{C}\right)$				1				
	Stainless steel 1.7357 (-20 to $\left.600^{\circ} \mathrm{C}\right)$				5				
(operating temp. ranges are	Alloy steel 1.7357 (-20 to $\left.550{ }^{\circ} \mathrm{C}\right)$				7				
specified in parentheses)	Other material on request				9				
6. Packing	Graphite - Live Loading				5				
7. Multi-step pressure	One-step pressure reduction				1				
reduction	Two-step pressure reduction				2				
8. Flow characteristic	Linear - Leakage rate class III.					L			
	Linear - Leakage rate class V.					D			
	Equal-percentage - Leakage rate class III.					R			
	Equal-percentage - Leakage rate class V.					Q			
9. No. of orifice plate	Max. 3					X			
10. Nominal pressure	PN inlet / outlet						(XX/XX)		
11. Max. operating temp. ${ }^{\circ} \mathrm{C}$	Acc. to process medium							XXX	
12. Nominal size	DN - acc. to the valve's execution								(XX/XX)

Ordering example: Steam-conditioning station with water injection, DN 80/150, PN 160/100, with electric actuator Modact MTN Control, body material: carbon steel, connection: weld ends, packing: graphite, two-step pressure reduction, one orifice plate at outlet, with linear flow characteristic is specified as follows RS 702 EYA 4152 L1 (160/100)/400-(80/150).

Note

PN and DN of outlet, multi-step pressure reduction No. of orifice plate possibly different type of actuating is possible after the agreement with the producer.
Further it is necessary to specify in the order the parametres of injection water possibly the type of injection nozzle (VH) acc. to the data sheet No. 02-03.2 or (VHP) acc. to the data sheet No. 02-03.3

Electric actuator Modact MTR Regada

Technical data

Type	Modact MTR
Marking in valve specification No.	EPD
Voltage	230 V
Frequency	$50 / 60 \mathrm{~Hz}$
Motor power	16 or 25 W
Control	3 - pos. c. (in connection with NOTREP positioner - continuous)
Nominal force	$10,16,25 \mathrm{kN}$
Travel	12,5 to 100 mm
Enclosure	IP 54 (IP 65 on request)
Process medium max. temperature	Acc. to used valve
Ambient temperature range	-25 to $50{ }^{\circ} \mathrm{C}$
Ambient humidity limit	90% (tropical execution 100% condensation)
Weight	27 to 31 kg

Dimensions of Modact MTR

Columns	with acme thread		Columns	with ball bolt			
	A	B	C	Version	A	B	C
P-1045a/C	130	378	707	P-1045a/H	130	400	729

Detail of coupling

${ }^{\text {7) }}$ RS 702, DN 100 $\div 250$
${ }^{\text {nt }}$ RS 702, DN 50

Specification of Modact MTR

Combinations available and specification codes: $\mathrm{A}+\mathrm{B}=07$

Notes:

1) State the switching-off thrust in your order by words. If not stated it is adjusted to the maximum rate of the corresponding range. The load torgue equals minimally the maximum switching-off thrust of the choosing range multiplied by 1.3.
2) The maximum load thrust equals the max. Switching-off thrust multiplied by:

- 0.8 for duty cycle S2-10 min., Or S4-25\%, 6 - 90 cycles per hour
- 0.6 for duty cycle S4-25\%, 90-1200 cycles per hour

3) The thread in the coupling is to be specified in the order by words.

Wiring diagram of actuator Modact MTR

Notes:

1. For the EA version with connection to the terminal board, the terminal $1 / 60$ (the wiring diagrams Z269a and Z260a) is leaded out to the terminal No. 1.
2. For EA version with connection to the terminal board the actuator is not equipped by the jumper X3:6-X:7 and X3:2-X:8 (Z296) from manufacturing plant (it is necessary to connect it by customer).

Legend:

Z5a connection of single resistive transmitter
Z6a connection of double resistive transmitter
Z10a connection of resistive with current converter of capacitive transmitter-2-wire without supply
Z257b
Z260a
Z269a
Z296
Z298 connection of resistive transmitter with current converter - 3-wire connection of resistive transmitter with current converter-3-wire with power supply connection of resistive transmitter with current converter or capacitive transmitter-3-wire with power supply conection of 1 -phase electric motor conection of thrust and position switches and space heater

B1 resistive trasmitter (potentiometer) single
B2 resistive trasmitter (potentiometer) double
B3 capacitive transmitter
S1 thrust switch "open"
S2 thrust switch "closing"
S3
S4
S5
S6
position switch "open"
position switch "closed"
additional position swich "open"
additional position "closed
motor
capacitor
motor s brake
space heater
terminal board
electric motor s terminal board
X3 \quad ele $1 / \mathrm{input}$ (output) current (voltage) signals
R reducting resistor
$R_{L} \quad$ loading resistor

Technical data

Type	Modact MTN Control	Modact MTN
Marking in valve specification No.	EYA	EYB
Voltage	$3 \times 220 \mathrm{~V} / 400 \mathrm{~V}(3 \times 220 \mathrm{~V} / 380 \mathrm{~V})$	
Frequency	50 Hz	
Motor power	See specification table	
Control	3 - position control or continuous	
Nominal force	15000 and 25000 N	
Travel	10 to 100 mm	
Enclosure	IP 55	
Process medium max. temperature	Acc. to used valve	
Ambient temperature range	-25 to $55^{\circ} \mathrm{C}$	
Ambient humidity range	$5-100 \%$ with condensation	
Weight	45 kg	

Wiring diagram of actuator Modact MTN

Execution - terminal board
Position transmitter: resistance $2 \times 100 \mathrm{~W}$ or without

Position transmitter: capacity CPT 1 1/A 4-20 mA

SQ1 (MO) power switch in "opening" direction SQ2 (MZ) power switch in "closing" direction SQ3(PO) limit switch in "opening" direction SQ5 (PZ) limit switch in "closing" direction SQ4(SO) signalisation switch in "opening" direction SQ6 (SZ) signalisation switch in "closing" direction
EH
CPT1 capacity position transmitte CPT1/A $4-20 \mathrm{~mA}$
BAM-001 dynamic brake
KO contactor in "opening" direction
KZ contactor in "closing" direction
F thermal relay
SA1 control switch "local - remote"
SA2 switch "open-close"
BQ1,BQ2 position transmitter $2 \times 100 \mathrm{~W}$
ZP2.RE electronic positioner

Connection dimensions - details of additional specification 52442

position closed	Columns pitch	B	150
	Position "closed"	b	74
		g	130
	Clutch thread	I	M 20x1,5
		II	M 16x1,5
		III	M 10x1

Execution	Specification No.		RS 702
	basic	additional	
Bg2II	52442	XMXX	DN 50
Bg2I	52442	XRXX	DN 100 $\div 250$

Specification of actuators Modact MTN and Modact MTN Control

Basic equi	pment :	power sw limit switc limit and	itches MO, ches PO, PZ signalisation	MZ switches		$\begin{aligned} & 1 \mathrm{po} \\ & 2 \mathrm{lim} \\ & 2 \mathrm{lim} \end{aligned}$	sition tr it switch it and sis		$\begin{aligned} & \text { - resist. } 2 \\ & \text { ZZ } \\ & \text { on switch } \end{aligned}$	$\begin{aligned} & 100 \mathrm{~W} \\ & \mathrm{~s} \mathrm{SO}, \mathrm{~S} \end{aligned}$	or cap.	PT1/A
Basic tech	nical data :											
	Power switch		Resetting			Electr	motor		Weig		Specifica	ation No.
Typ	setting range kN	power kN	speed mm.min	mm	Power W	rpm	$\begin{array}{\|c\|} \hline \ln (400 \mathrm{~V}) \\ \mathrm{A} \end{array}$	$\frac{1 z}{1 n}$	Aluminium	Cast	Basic	Additional
			50		180	900	0.67	2.5				XX0X
			80		180	900	0.67	2.5				XX1X
MT 15	11,5-15	17	125	10-100	250	1380	0.77	3.4	33	45		XX3X
			36		120	660	0.67	2.2				XX2X
			27		120	660	0.67	2.2			52	XXAX
			50		180	900	0.67	2.5			5244	XX4X
			80		180	900	0.67	2.5				XX5X
MT 25	15-25	32,5	125	10-100	250	1380	0.77	3.4	33	45		XX6X
			36		120	660	0.67	2.2				XX7X
			27		120	660	0.67	2.2				XX8X
Execution,	electric conn	nection :										
Via termina	al board											6XXX
With conec	cor KBSN (for	r Modact	MTN execution	tion only)								7XXX
ransmit	for Modact	MTN	Capacity tr	ansmitter	T 1/A	-20 m						XXX0
ransmit	for	M	Resistance	transmitte	2×10							XXX2
Additional	electric equip	ment							With resis transmitter2	$\begin{aligned} & \text { stance } \\ & \times 100 \Omega \end{aligned}$	$\begin{array}{r} \text { With ca } \\ \text { transmitter } \end{array}$	apacity CPT 1/A
Modact MT	TN execution		With local	control - te	minal b					XXX3		XXX1
Modact M	N execution		With unlock	k control -	nector	BNS				XXX3		XXX1
				Without br	ke BAM	and po	sitioner			XXX4		XXXA
			Without loca control	With brake	BAM,	hout p	ositioner			XXX5		XXXB
(with	uilt-in contac	cution r		With brake	BAM	with p	ositioner					XXXC
co				Without br	ke BAM	and po	sitioner			XXX7		XXXD
			$\begin{aligned} & \text { With local } \\ & \text { control } \end{aligned}$	With brake	BAM,	hout p	sitioner			XXX8		XXXE
				With brake	BAM	positio	ner					XXXF

Note : When execution with flasher is requested, please specify this requirement in writing - execution with flasher.

Dimensions of actuator Modact MTN Dimensions of actuator Modact MTN Control

A	160
B	150
a	30
b	74
g	130
$c(a)$	308
$d(b)$	352
$e(a)$	615
$f(b)$	659
$c h(g)$	715

Technical data

Type	52030 MOP	52030 MOP Control	52031 MOP	52031 MOP Control
Marking in valve specification No.	EYE	EYF	EYG	EYH
Voltage	$3 \times 230 / 400 \mathrm{~V}$			
Frequency	50 Hz			
Motor power	See specification table			
Control	3 - position control or continuous			
Nominal force	20 Nm			
Travel	Acc. to given stroke			
Enclosure	IP 67			
Process medium max. temperature	Acc. to used valve			
Ambient temperature range	acc. to ČSN 33 2000-3, class AA7, AB7, AC1, AD5, AE5, AF2, AG2, AH2, Ak2, AL2, AM2, AN2, AP3, BA4, BC3			
Working condition	Loading S2 acc. to ČSN EN 60 034-1			
Weight	23-36 kg		$33-59 \mathrm{~kg}$	

Dimensions of Modact MOP

DIMENSIONAL DRAWING OF ACTUATORS MODACT MOP 52030 a 52031 EXECUTION WITH TERMINAL BOARD

DIMENSIONAL DRAWING OF ACTUATORS MODACT MOP 52030 a 52031 EXECUTION WITH CONECTOR

Type marking	A	B	C	D	E	F	G	H	J	K	L
52030	305	90	300	78	334	258	592	160	99	120	325
52031	376	120	328	92	436	258	694	200	-	144	350

DIMENSIONAL DRAWING OF ACTUATORS MODACT MOP CONTROL
52030 a 52031

Type marking	A	B	C	D	E	F	G	H	J	K	L
52030	305	90	300	78	334	258	592	160	99	120	325
52031	376	120	328	92	436	258	694	200	-	144	328

Specifikace pohonu Modact MOP

									XX XXX		X	X \times	X X
Connection			Via termi	al board						5			
dimensions	Output sh	ft type A	With con	ctor						F			
Local control, positi	on indicato												
			Without	cal contr	withou	position in	dicator				1		
Resistance execution with	hout transm	or itter	Local con								4		
			Local con	ol for	ators	dact MOP	Control				7		
			Without	cal con	withou	position in	dicator				B		
Capacity	transmitter 1/A		Local con								E		
			Local con	ol for	ators	dact MOP	Control				H		
	Mo	ment	OD OD	$\stackrel{\otimes}{\sim}$		Electr	motor						
marking	Tripping	Driving	¢	の	Power	rpm	$\begin{gathered} I_{n} \\ (400 \mathrm{~V}) \end{gathered}$	$\mathrm{I}_{2} / \mathrm{I}_{n}$					
	(Nm)	(Nm)	(1/min.)	(ot)	(kW)	(1/min.)	(A)	(-)					
MOP 40/70-7		70	7		0,05	650	0,42	1,6				J	
MOP 40/65-9		65	9		0,06	830	0,34	2,0				0	
MOP 40/55-15		55	15		0,09	870	0,47	2,0				1	
MOP 40/75-25	20-40	75	25		0,18	1350	0,56	3,0				2	
MOP 40/65-40		65	40		0,25	1350	0,76	3,0				3	
MOP 40/50-50		50	50		0,25	2830	0,68	4,0	52030			4	
MOP 40/60-80		60	80		0,37	2740	1,00	3,5				5	
MOP 80/135-7		135	7		0,09	630	0,36	2,2				K	
MOP 80/140-9	40-80	140	9		0,12	890	0,60	2,5				6	
MOP 80/135-15	40-80	135	15	2-250	0,18	835	0,62	2,3				7	
MOP 80/105-25		105	25		0,25	1350	0,76	3,0				8	
MOP 100/130-9		130	9		0,12	890	0,60	2,5				0	
MOP 100/130-15		130	15		0,25	850	0,78	2,7				1	
MOP 100/150-25		150	25		0,37	920	1,20	3,1				2	
MOP 100/170-40	63-100	170	40		0,55	1395	1,45	3,9	52031			3	
MOP 100/150-63		150	63		0,75	1395	1,86	4,0				4	
MOP 100/200-80		200	80		1,1	2845	2,40	6,1				E	
MOP 100/150-100		150	100		1,1	1410	2,65	4,3				5	
MOP 100/150-145		150	145		1,5	2860	3,30	5,5				F	

the table continues on next page
continuation of the table of the specification of Modact MOP from the previous page

			XX XXX				X X
Signalization, position transmitter, blinker							
	Without signalisation, position transmitter and blinker					0	0
	Position transmitter						1
	Signalization switches					2	2
	Signalization switches and position transmitter						3
	Blinker						4
	Position transmitter, blinker						5
	Signalization switches and blinker						6
	Signalization switches, position transmitter, blinker						7
Signalization, position transmitter, blinker							
	Complete equipment Sch P-0781	Position transmitter				A	A
		Signalization switches and position transmitter					B
		Position transmitter, blinker					
		Signalization switches, position transmitter and blinker				D	D
	Without positioner	Without signalization, without posit. transmitter and blinker					E
		Position transmitter					F
		Signalization switches				G	G
		Signalization switches and position transmitter				H	H
		Blinker					
		Position transmitter, blinker					J
		Signalization switches, blinker				K	K
		Signalization switches, position transmitter and blinker				L	L
	Without positioner and brake BAM	Without signalization, without position transm. and blinker					M
		Position transmitter					N
		Signalization switches					0
		Signalization switches and position transmitter				P	P
		Blinker					R
		Position transmitter, blinker					S
		Signalization switches, blinker					T
		Signalization switches, position transmitter and blinker					U
This mark is valid for the the types of the actuators							P

Technical data

Type	SAR 07.5	SAR Ex 07.5	SAR 10.1	SAR Ex 10.1
Marking in valve's specifcation No.	EAG	EAH	EAJ	EAK
Voltage	380 or 400 V			
Frequency	50 Hz			
Motor power	See specification table			
Control	3-position control or with signal 4-20 mA			
Nominal force	$20 \mathrm{Nm} \sim 10 \mathrm{kN} ; 25 \mathrm{Nm} \sim 12,5 \mathrm{kN} ; 30 \mathrm{Nm} \sim 15 \mathrm{kN}$			
Travel	Acc. to the valve stroke $16,25,40,63,100 \mathrm{~mm}$			
Enclosure	IP 67			
Process medium max. temperature	Acc. to used valve			
Ambient temperature range	-25 až $40^{\circ} \mathrm{C}$			
Ambient humidity limit	100 \%			
Weight	20 kg			

Specification of Auma actuators

Type		SA	X	XX	XX.X
		SA	R		
Duty	Control				
Execution	Normal			Ex	
	Non-explosive				
Actuator's size	07.5				07.5
	10.1				10.1

Output drive type A (thread TR 36x6 LH, flange size F10)

			SAR 10.1 SAR Ex 10.1		SAR 10.1, SAR Ex 10.1
	4		$\begin{gathered} 60-120 \\ \mathrm{Nm} \end{gathered}$		0,09
	5,6				0,09
	8				0,18
	11				0,18
	16				0,37
	22				0,37
	32				0,75
	45				0,75
Output drive type A (thread TR 20x4 LH, flange size F10)					
			SAR 07.5 SAR Ex 07.5		SAR 07.5, SAR Ex 7.5
	4		$\begin{gathered} 30-60 \\ \mathrm{Nm} \end{gathered}$		0,045
	5,6				0,045
	8				0,09
	11				0,09
	16				0,18
	22				0,18
	32				0,37
	45				0,37

Accessories

2 TANDEM switches
Gearing for signalisation of position
Mechanical position indicator
Potentiometer $1 \times 200 \Omega$
Electronic position transmitter RWG (potentiometer included), 4-20 mA, 2-wire
Electronic position transmitter RWG (potentiometer included), 4-20 mA, 3/4-wire
Inductive position transmitter IWG, 4-20 mA
AUMATIC - for continuous control (specification of accessories acc. to catalogue of producer)

Dimensions of actuators Auma

Normal execution

Version with AUMATIC

Ex version

Output shaft A, flange F10

Attachement yoke (4 columns)

* Data in parentheses apply to DN 250 only

Technical data

Type	rAB5	exrAB5
Marking in the valve's specification No.	EZG	EZH
Voltage	400 / 230 V ; 230 V	400 / 230 V
Frequency	50 Hz	
Motor power	See specification table	
Control	3 - position control or with signal 4-20 mA	
Nominal force	$25 \mathrm{Nm} \sim 12,5 \mathrm{kN} ; 30 \mathrm{Nm} \sim 15 \mathrm{kN}$	
Stroke	Acc. to valve's stroke 16, 25, 40, 63 mm	
Enclosure	IP 66	IP 65
Process medium max. temperature	Acc. to used valve	
Ambient temperature range	-25 to $80^{\circ} \mathrm{C}$	-20 to $40^{\circ} \mathrm{C}$
Ambient humidity limit	90% (tropical version 100% with condensation)	
Weight	16-18 kg	16 kg

Specification of actuators

								XX	X	AB5	A	X	+ XXX
Execu				Non-e	losive			ex					
				Norm									
Duty				Contr					r				
Actua	size									AB5			
Outpu	ve ty	(thre	R 20x4 L	flange							A		
			rAB5				exrAB5						
			exrAB5		400/230V	230 V	400/230V						
인	2,5				0,09	0,09	0,09					2,5	
5	5	$\frac{\mathrm{D}}{0}$		-	0,12	0,12	0,12					5	
©	7,5	\bigcirc		$\stackrel{\text { ® }}{ }$	0,09	0,09	0,09					7,5	
$\stackrel{0}{0}$	10	응	10-30	O	0,12	0,12	0,18					10	
\#\#	15	은	Nm	¢	0,18	0,18	0,18					15	
$\frac{?}{3}$	20				0,18	0,18	0,37					20	
	30				0,37	0,37	0,37					30	
	40				0,37	0,37	0,37					40	
				Poten	meter 1x1								F
Acc				Doub	potentiome								FF
				Electr	ic transmit	4-20							ESM21
				Positi	er ACTUM	C R							CMR

Dimensions of actuator ...AB5

Actuator...AB5

Output shaft type A, flange F10

Attachement yoke (4 columns)

Electric actuators ...AB8 Schiebel

Technical data

Type	rAB8	exrAB8
Marking in valve's specification No.	EZK	EZL
Voltage	400 / $230 \mathrm{~V} ; 230 \mathrm{~V}$	400 / $230 \mathrm{~V} ; 230 \mathrm{~V}$
Frequency	50 Hz	
Motor power	See specification table	
Control	3 - position or with signal of 4-20 mA	
Nominal force	Acc. to valve's stroke 16, 25, 40, 63, 100 mm	
Stroke	25 mm	
Enclosure	IP 66	IP 65
Process medium max. temp.	Acc. to used valve	
Ambient temperature range	-25 to $80^{\circ} \mathrm{C}$	-20 to $40^{\circ} \mathrm{C}$
Ambient temperature limit	90 \% (tropical version 100 \% with condensation)	
Weight	24 kg	20 kg

Specification of actuator

								XX	X	AB8	A	X	XXX
Execu				NonNorm	losive			ex					
Duty				Contr					r				
Actua	size									AB8			
Outpu	aft ty	con	flange	F10,	read 36x6)						A		
			rAB8				exrAB8						
					400/230V	230 V	400/230V						
	2,5				0,12	0,12	0,12					2,5	
은	5	$\stackrel{\mathbb{O}}{\underline{D}}$		立	0,12	0,12	0,12					5	
ষ్ర్ర	7,5	홍		$\stackrel{\square}{3}$	0,18	0,18	0,18					7,5	
$\stackrel{0}{0}$	10	음	30-80	\%	0,37	0,37	0,18					10	
를	15	兰	Nm	흉	0,37	0,37	0,37					15	
	20				0,55	0,75	0,37					20	
	30				0,75	1,10	0,75					30	
	40				1,10	1,10	1,10					40	
				Poten	meter 1x10								F
Acces				Doub	potentiome								FF
				Electr	ic transmitt	4-20							ESM21
				Positi	er ACTUM	C R							CMR

Dimensions of actuators ...AB8

Output shaft type A, flange F10

$\max \not \subset 26$

Attachement yoke (4 columns) * Data in parentheses apply to DN 250 only

Technical data

Accessories

Electropneumatic positioner (analogous) type SRI 990	Device with electric input of 4 to 20 mA and outlet of controllling air into actuator. It is adjusted by switches and potentiometers.
Electropneumatic positioner (inteligent)	Device with electric input of 4 to 20 mA and outlet of controllling air into actuator. It is adjusted by PC and special software. Comunication HART, Fieldbus Foundation, PROFIBUS.
Electropneumatic positioner (digital)	Device with electric input of 4 to 20 mA and outlet of contr. air into actuator. It is adjusted by a local keyboard and diods, possibly on display.
Pneumatic positioner type SRP 981 991 - D	Device with pneumatic input of 20 to 100 kPa to control the pneumatic actuators with pneumatic control signal
Signalisation switches type SGE 985	Adjustable end position switches
Air set type A 3420	Reduces control air pressure to a value requied
Electropneumatic positioner type SRI 986	Analog positioner with input signal of 4 (0) - 20 mA

Operating conditions

Pneumatic actuators FOXBORO can operate with extremely high ambient temperatures with unique resistance to shock loads. They excel with resistance to vibrations and reached 10^{6} of cycles in operation. It is possible to deliver the actuator with both fail to open and fail to close function, possibly with a position blocking (air lock) upon feeding pressure air supply failure. Various accessories can be delivered together with the actuator.

Direct and indirect functions

Direct function ensures that actuator's stem retracts upon control air supply failure (valve opens).
Indirect function ensures that actuator's stem extends upon control air supply failure (valve closes).

Dimensions and weights of Foxboro actuators

$\overline{D N}$	Actuator	H	A	B	G	M	V1	V2	V3	Ds	m [kg]	m (+ HW)
$\mathbf{2 5}$	PO 700	16	405	150	M10x1	160	278	227	600	350	65	82
$\mathbf{5 0}$	PO 700	25	405	150	M16x1,5	160	278	227	600	350	65	82
$\mathbf{1 0 0}$	PO 1502	40	550	150	M20x1,5	160	324	409	---	---	148	---
$\mathbf{1 2 5 , 1 5 0}$	PO 1502	63	550	150	M20x1,5	160	337	409	---	---	148	---

Note: Face to face dimensions [mm]
Missing data to be given by producer.

Valve specification No. of Foxboro actuators

		PXXXXX	X	XX	XX	
Actuator type		PA 700				
		PA 1502				
Colour	white		B			
Spring range [bar]	2,0-3,5			FS		
	1,8-2,7			JC		
	1,5-3,8			VI		
Hand wheel	without wheel				O	
	heavy wheel				H	
Function	direct				A	
	indirect				Z	
Stroke [mm]	20					A
	40					B
	60					C
	80					D

DN	Actuator type	Function	Stroke $[\mathrm{mm}]$	Spring range $[\mathrm{bar}]$	Setting of spring $[\mathrm{bar}]$	Feeding pressure min. $[\mathrm{bar}]$
	PO 700 BVIxZB	Fail to close	40	$1,5-3,8$	$2,36-3,8$	5,3
	PO 700 BVIxAB	Fail to open	40	$1,5-3,8$	$1,5-2,93$	5,3
100	PO 1502 BFSOZC	Fail to close	60	$2-3,5$	$2,5-3,5$	5
	PO 1502 BFSOAC	Fail to open	60	$2-3,5$	$2-3$	4,5
125,150	PO 1502 BFSOZD	Fail to close	80	$2-3,5$	$2,3-3,5$	5
	PO 1502 BFSOAD	Fail to open	80	$2-3,5$	$2-3,18$	5

Maximal permissible overpressures [MPa]

Material	PN	Temperature [${ }^{\circ} \mathrm{C}$]										
		100	150	200	250	300	350	400	450	500	550	600
Cast steel1.0619	16	1.36	1.27	1.14	1.04	0.94	0.88	0.84	---	---	---	---
	25	2.13	1.98	1.78	1.62	1.47	1.37	1.32	---	---	---	---
	40	3.41	3.17	2.84	2.60	2.35	2.19	2.11	---	---	---	---
	63	5.37	4.99	4.48	4.09	3.71	3.45	3.33	---	---	---	---
	100	8.53	7.92	7.11	6.50	5.89	5.48	5.28	---	---	---	---
	160	13.6	12.7	11.4	10.4	9.40	8.80	8.40	---	---	---	---
	250	21.3	19.8	17.8	16.2	14.7	13.7	13.2	---	---	---	---
	320	27.2	25.4	22.8	20.8	18.8	17.6	16.8	---	---	---	---
	400	34.1	31.7	28.4	26.0	23.5	21.9	21.1	---	---	---	---
Alloy steel1.7357	16	1.63	1.58	1.49	1.43	1.33	1.23	1.15	1.07	0.89	0.35	---
	25	2.54	2.48	2.33	2.23	2.08	1.93	1.80	1.67	1.39	0.55	---
	40	4.07	3.96	3.74	3.57	3.33	3.09	2.89	2.67	2.23	0.88	---
	63	6.41	6.24	5.88	5.63	5.24	4.86	4.55	4.20	3.51	1.39	---
	100	10.17	9.90	9.34	8.93	8.32	7.71	7.22	6.67	5.57	2.21	---
	160	16.3	15.8	14.9	14.3	13.3	12.3	11.5	10.7	8.90	3.50	---
	250	25.4	24.8	23.3	22.3	20.8	19.3	18.0	16.7	13.9	5.50	---
	320	32.6	31.6	29.8	28.6	26.6	24.6	23.0	21.4	17.8	7.00	---
	400	40.7	39.6	37.4	35.7	33.3	30.9	28.9	26.7	22.3	8.80	---
Stainless steell 1.4931	16	1.63	1.58	1.54	1.46	1.35	1.27	1.15	1.07	0.89	0.79	0.43
	25	2.54	2.48	2.41	2.29	2.11	1.98	1.80	1.67	1.39	1.23	0.67
	40	4.07	3.96	3.85	3.66	3.38	3.18	2.89	2.67	2.23	1.97	1.06
	63	6.41	6.24	6.06	5.76	5.33	5.00	4.55	4.20	3.51	3.10	1.68
	100	10.17	9.90	9.63	9.14	8.46	7.94	7.22	6.67	5.57	4.92	2.26
	160	16.3	15.8	15.4	14.6	13.5	12.7	11.5	10.7	8.90	7.90	4.30
	250	25.4	24.8	24.1	22.9	21.1	19.8	18.0	16.7	13.9	12.3	6.70
	320	32.6	31.6	30.8	29.2	27.0	25.4	23.0	21.4	17.8	15.8	8.60
	400	40.7	39.6	38.5	36.6	33.8	31.8	28.9	26.7	22.3	19.7	10.6

Notes:

